Using SDO’s AIA to investigate energy transport from a flare’s energy release site to the chromosphere⋆
نویسندگان
چکیده
Context. Coordinated observations of a GOES B4.8 microflare with SDO’s Atmospheric Imaging Assembly (AIA) and the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) on 2010 July 31 show that emission in all seven of AIA’s EUV channels brightened simultaneously nearly 6 min before RHESSI or GOES detected emission from plasma at temperatures around 10 MK. Aims. To help interpret these and AIA flare observations in general, we characterized the expected temporal responses of AIA’s 94, 131, 171, 193, 211, and 335 Å channels to solar flare brightenings by combining (1) AIA’s nominal temperature response functions available through SSWIDL with (2) EUV spectral line data observed in a flare loop footpoint on 2001 April 24 with the Coronal Diagnostic Spectrometer (CDS) on timescales comparable to AIA’s image cadence. Methods. The nine emission lines observed by CDS cover a wide range of formation temperature from about 0.05 to 8 MK. Line brightenings observed early during the CDS flare occurred at temperatures less than about 0.7 MK, with the largest values around 0.1 MK. These brightenings were consistent with the flare’s energy transport being dominated by nonthermal particle beams. Because all of AIA’s EUV channels are sensitive to emission from plasma in the 0.1 to 0.7 MK temperature range, we show that all of AIA’s EUV channels will brighten simultaneously during flares like this, in which energy transport is dominated by nonthermal particle beams. Results. The 2010 July 31 flare observed by AIA and RHESSI displays this behavior, so we conclude that such beams likely dominated the flare’s energy transport early during the event. When thermal conduction from a reconnection-heated, hot (∼10 MK) plasma dominates the energy transport, the AIA channels that are sensitive to emission from such temperatures (particularly the 94 and 131 Å channels) will brighten earlier than the channels that are not sensitive to such temperatures (171 and 211 Å). Conclusions. Thus, based on the differences expected between AIA’s response to flares whose energy transport is dominated by nonthermal particle beams from those whose energy transport is dominated by thermal conduction, AIA can be used to determine the dominant energy transport mechanism for any given event.
منابع مشابه
Where Is the Chromospheric Response to Conductive Energy Input from a Hot Pre-flare Coronal Loop?
Before the onset of a flare is observed in hard X-rays there is often a prolonged pre-flare or pre-heating phase with no detectable hard X-ray emission but pronounced soft X-ray emission suggesting that energy is being released and deposited into the corona and chromosphere already at this stage. This work analyses the temporal evolution of coronal source heating and the chromospheric response ...
متن کاملChromospheric Flares
In this topical review I revisit the “chromospheric flare”. This should currently be an outdated concept, because modern data seem to rule out the possiblity of a major flare happening independently in the chromosphere alone, but the chromosphere still plays a major observational role in many ways. It is the source of the bulk of a flare’s radiant energy – in particular the visible/UV continuum...
متن کاملFORECASTING TRANSPORT ENERGY DEMAND IN IRAN USING META-HEURISTIC ALGORITHMS
This paper presents application of an improved Harmony Search (HS) technique and Charged System Search algorithm (CSS) to estimate transport energy demand in Iran, based on socio-economic indicators. The models are developed in two forms (exponential and linear) and applied to forecast transport energy demand in Iran. These models are developed to estimate the future energy demands based on pop...
متن کاملOscillations of a Giant Solar Tornado
Solar magnetic tornadoes are known to be one of the mass and energy transport mechanisms from the lower solar atmosphere into the upper layers of the solar corona. A bright spiral structure with two arms is observed using high-cadence EUV images of 171, 193 and 304 Ǻ channels of Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory (SDO) on 10th of July 2011 for three hours. ...
متن کاملUsing system dynamics approach to identify factors affecting energy consumption and CO2 emissions in urban transport: A Case Study of Tehran
The current trend of rising energy consumption in the world has hit mankind with two major crises: first, environmental pollution, and second, the acceleration of finishing energy supplies. Energy storage and reduction of pollutants in the city plays a crucial role in the process of maintaining existing energy. Meanwhile, the transportation sector needs attention due to its importance and posit...
متن کامل